Skip to content

Number Theory and ...

Number theory

Task 1

Check the following congruences:

  1. \(12 \equiv 2 \pmod{5}\)
  2. \(12 \equiv 3 \pmod{10}\)
  3. \(21 \equiv 1 \pmod{5}\)
  4. \(23 \equiv 3 \pmod{4}\)

Task 2

Probe that if \(a \equiv b \pmod{n}\) and \(c \equiv d \pmod{n}\), then:

  1. \(a+c \equiv b+d \pmod{n}\)
  2. \(a-c \equiv b-d \pmod{n}\)
  3. \(ac \equiv bd \pmod{n}\)
  4. \(a^k \equiv b^k \pmod{n}\) for all \(k \in \mathbb{N}\)

Task 3

Compute the following greatest common divisors (use the Euclidean algorithm):

  1. \(\gcd(12, 75)\)
  2. \(\gcd(12, 68)\)
  3. \(\gcd(72, 55)\)
  4. \(\gcd(45, 42)\)

Task 4

Compute the following least common multiples:

  1. \(\text{lcm}(12, 10)\)
  2. \(\text{lcm}(12, 14)\)
  3. \(\text{lcm}(72, 25)\)
  4. \(\text{lcm}(45, 60)\)

Task 5

Solve congruences of the form \(ax \equiv b \pmod{m}\):

  1. \(2x \equiv 3 \pmod{5}\)
  2. \(3x \equiv 4 \pmod{7}\)
  3. \(4x \equiv 5 \pmod{6}\)
  4. \(5x \equiv 6 \pmod{8}\)
  5. \(6x \equiv 7 \pmod{9}\)

Induction

Task 1

Prove the following statements by induction:

  1. \(1 + 2 + \dots + n = \frac{n(n+1)}{2}\) for all \(n \in \mathbb{N}\).

Task 2

Prove the following statements by induction:

  1. \(1+3+5+\dots+(2n-1)=n^2\) for all \(n \in \mathbb{N}\).

Task 3

Prove the following statements by induction:

  1. \(1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}\) for all \(n \in \mathbb{N}\).

Task 4

Prove the following statements by induction:

\[ \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n \]

Task 5

\[ \binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n} \]

Task 6

Prove the following statements by induction:

  1. \(k! \geq 2^k\) for all \(k\geq 4\)
  2. \(37^{500}-37^4\) is divisible by 10.
  3. For \(n\geq0\)
\[ \frac{1}{1\cdot 5}+ \frac{1}{5\cdot 9}+ \frac{1}{9\cdot 13}+ \cdots+ \frac{1}{(4n-3)(4n+1)}= \frac{n}{4n+1} \]