Number Theory and ...
Number theory¶
Task 1¶
Check the following congruences:
- \(12 \equiv 2 \pmod{5}\)
- \(12 \equiv 3 \pmod{10}\)
- \(21 \equiv 1 \pmod{5}\)
- \(23 \equiv 3 \pmod{4}\)
Task 2¶
Probe that if \(a \equiv b \pmod{n}\) and \(c \equiv d \pmod{n}\), then:
- \(a+c \equiv b+d \pmod{n}\)
- \(a-c \equiv b-d \pmod{n}\)
- \(ac \equiv bd \pmod{n}\)
- \(a^k \equiv b^k \pmod{n}\) for all \(k \in \mathbb{N}\)
Task 3¶
Compute the following greatest common divisors (use the Euclidean algorithm):
- \(\gcd(12, 75)\)
- \(\gcd(12, 68)\)
- \(\gcd(72, 55)\)
- \(\gcd(45, 42)\)
Task 4¶
Compute the following least common multiples:
- \(\text{lcm}(12, 10)\)
- \(\text{lcm}(12, 14)\)
- \(\text{lcm}(72, 25)\)
- \(\text{lcm}(45, 60)\)
Task 5¶
Solve congruences of the form \(ax \equiv b \pmod{m}\):
- \(2x \equiv 3 \pmod{5}\)
- \(3x \equiv 4 \pmod{7}\)
- \(4x \equiv 5 \pmod{6}\)
- \(5x \equiv 6 \pmod{8}\)
- \(6x \equiv 7 \pmod{9}\)
Induction¶
Task 1¶
Prove the following statements by induction:
- \(1 + 2 + \dots + n = \frac{n(n+1)}{2}\) for all \(n \in \mathbb{N}\).
Task 2¶
Prove the following statements by induction:
- \(1+3+5+\dots+(2n-1)=n^2\) for all \(n \in \mathbb{N}\).
Task 3¶
Prove the following statements by induction:
- \(1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}\) for all \(n \in \mathbb{N}\).
Task 4¶
Prove the following statements by induction:
\[
\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n
\]
Task 5¶
\[
\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}
\]
Task 6¶
Prove the following statements by induction:
- \(k! \geq 2^k\) for all \(k\geq 4\)
- \(37^{500}-37^4\) is divisible by 10.
- For \(n\geq0\)
\[
\frac{1}{1\cdot 5}+
\frac{1}{5\cdot 9}+
\frac{1}{9\cdot 13}+
\cdots+
\frac{1}{(4n-3)(4n+1)}=
\frac{n}{4n+1}
\]